Title: 

Reaction-driven restructuring of defective PtSe2 into ultrastable catalyst for the oxygen reduction reaction

 

Year of Publication:

2024

 

Authors:

Wenhan Niu, Srimanta Pakhira, Guangming Cheng, Fang Zhao, Nan Yao, Jose L. Mendoza-Cortes, Bruce E. Koel

 

Journal:

Nature Materials

 

Abstract:

PtM (M = S, Se, Te) dichalcogenides are promising two-dimensional materials for electronics, optoelectronics and gas sensors due to their high air stability, tunable bandgap and high carrier mobility. However, their potential as electrocatalysts for the oxygen reduction reaction (ORR) is often underestimated due to their semiconducting properties and limited surface area from van der Waals stacking. Here we show an approach for synthesizing a highly efficient and stable ORR catalyst by restructuring defective platinum diselenide (DEF-PtSe2) through electrochemical cycling in an O2-saturated electrolyte. After 42,000 cycles, DEF-PtSe2 exhibited 1.3 times higher specific activity and 2.6 times higher mass activity compared with a commercial Pt/C electrocatalyst. Even after 126,000 cycles, it maintained superior ORR performance with minimal decay. Quantum mechanical calculations using hybrid density …

 

URL:

https://www.nature.com/articles/s41563-024-02020-w