The filtered mass density function (FMDF) model (Jaberi et al. 1999 [1]) is employed for large eddy simulations (LES) of “high speed” partially-premixed methane jet flames with the “flamelet” and “finite-rate” kinetics models. The FMDF is the joint probability density function (PDF) of the scalars and is determined via the solution of a set of stochastic differential equations. The LES/FMDF is implemented using a highly scalable, parallel hybrid Eulerian–Lagrangian numerical scheme. The LES/FMDF results are shown to compare well with the experimental data for all flow conditions when “appropriate” reaction and mixing models are employed.

%B International Journal of Heat and Mass Transfer %V 53 %P 2551-2562 %8 05/2010 %G eng %N 11-12 %0 Conference Paper %B National Combustion Meeting %D 2009 %T Large-Eddy Simulations of Turbulent Methane Jet Flames with Filtered Mass Density Function %A Yaldizli, M. %A Mehravaran, K. %A Jaberi, F.A. %XThe filtered mass density function (FMDF) model (Jaberi et al. 1999 [1]) is employed for large eddy simulations (LES) of “high speed” partially-premixed methane jet flames with the “flamelet” and “finite-rate” kinetics models. The FMDF is the joint probability density function (PDF) of the scalars and is determined via the solution of a set of stochastic differential equations. The LES/FMDF is implemented using a highly scalable, parallel hybrid Eulerian–Lagrangian numerical scheme. The LES/FMDF results are shown to compare well with the experimental data for all flow conditions when “appropriate” reaction and mixing models are employed.

%B National Combustion Meeting %I The Combustion Institute %C Ann Arbor, Michigan %8 05/2009 %G eng