The scalar filtered mass density function (FMDF) is further developed and employed for large-eddy simulations (LES) of high speed turbulent flows in complex geometries. LES/FMDF is implemented via an efficient, hybrid numerical method. In this method, the filtered compressible Navier-Stokes equations in curvilinear coordinate systems are solved with a generalized, high-order, multi-block, compact differencing scheme. Turbulent mixing and combustion are modeled with the FMDF. The LES/FMDF method is used for simulations of isotropic turbulent flow in a piston-cylinder assembly, the flow in a shock tube and a supersonic co-axial helium-air jet. The critical role of pressure in the FMDF equation when applied to compressible flows is studied. It is shown that LES/FMDF is reliable and is able to simulate compressible turbulent mixing and combustion in supersonic flows.

%B 48th AIAA Aerospace Sciences Meeting %I AIAA %C Orlando, FL %8 01/2010 %G eng %0 Journal Article %J Journal of Physical Chemistry A %D 2010 %T Multi-level Extension of the Cluster-In-Molecule Local Correlation Methodology: Merging Coupled-Cluster and Moller-Plesset Perturbation Theories %A Wei Li %A Piotr Piecuch %XA multilevel extension of the local correlation “cluster-in-molecule” (CIM) framework, which enables one to combine different quantum chemistry methods to treat different regions in a large molecular system without splitting it into ad hoc fragments and saturating dangling bonds, is proposed. The resulting schemes combine higher-level methods, such as the completely renormalized coupled-cluster (CC) approach with singles, doubles, and noniterative triples, termed CR-CC(2,3), to treat the reactive part of a large molecular system, and lower-order methods, such as the second-order Møller−Plesset perturbation theory (MP2), to handle the chemically inactive regions. The multilevel CIM-CC/MP2 approaches preserve the key features of all CIM methods, such as the use of orthonormal localized orbitals and coarse-grain parallelism, while substantially reducing the already relatively low costs of the single-level CIM-CC calculations. Illustrative calculations include bond breaking in dodecane and the reactions of the bis(2,4,4-trimethylpentyl)dithiophosphinic acid with one and two water molecules.

%B Journal of Physical Chemistry A %V 114 %P 6721-6727 %8 05/2010 %G eng %N 24 %0 Journal Article %J Int. J. of Heat and Mass Transfer %D 2010 %T Non-Equilibrium Molecular Dynamics Study of Thermal Energy Transport in Au-SAM-Au Junctions %A Tengfei Luo %A John R. Lloyd %B Int. J. of Heat and Mass Transfer %V 53 %G eng %0 Conference Paper %B 48th AIAA Aerospace Sciences Meeting %D 2010 %T Numerical Investigations of Shock-Turbulence Interactions in a Planar Mixing Layer %A Li, Z. %A Jaberi, F.A. %XDirect numerical simulation (DNS) and large-eddy simulation (LES) of spatially developing supersonic mixing layer, interacting with an oblique shock wave are conducted with a new high-order Monotonicity-Preserving scheme. Without the incident shock, the mixing layer grows linearly and exhibits self-similar behavior after the transition. With the shock, significant small-scale turbulence is generated just behind the shock. With an increase in shock angle, the intensity of the shock-generated turbulence is increased and its peak position shifts away from the mixing layer centerline. The effects of turbulence on the shock are also shown to be very significant, such that normal shocklets and large adverse pressure gradients are created in some conditions. Comparison with the DNS data indicates that the LES with the modified kinetic energy viscosity (MKEV) subgrid stress model is able to predict the main features of the flow and shock-turbulence interactions.

%B 48th AIAA Aerospace Sciences Meeting %I AIAA %C Orlando, FL %8 01/2010 %G eng %0 Journal Article %J BMC Systems Biology %D 2010 %T Thermodynamic modeling of transcription: sensitivity analysis differentiates biological mechanism from mathematical model-induced effects %A Dresch, J.M. %A Liu, X. %A Arnosti, D.N. %A Ay, A. %B BMC Systems Biology %I BioMed Central Ltd %V 4 %P 142 %G eng %0 Journal Article %J Physical Review Letters %D 2009 %T Constraints on the Density Dependence of the Symmetry Energy %A M. B. Tsang %A Yingxun Zhang %A P. Danielewicz %A M. Famiano %A Li, Z. %A W. G. Lynch %A A. W. Steiner %XCollisions involving {112Sn} and {124Sn} nuclei have been simulated with the improved quantum molecular dynamics transport model. The results of the calculations reproduce isospin diffusion data from two different observables and the ratios of neutron and proton spectra. By comparing these data to calculations performed over a range of symmetry energies at saturation density and different representations of the density dependence of the symmetry energy, constraints on the density dependence of the symmetry energy at subnormal density are obtained. The results from the present work are compared to constraints put forward in other recent analyses.

%B Physical Review Letters %V 102 %P 122701 %8 03/2009 %G eng %0 Conference Paper %B 47th AIAA Aerospace Sciences Meeting %D 2009 %T Large-Scale Simulations of High Speed Turbulent Flows %A Li, Z. %A Jaberi, F.A. %XThis paper briefly describes a new class of high-order Monotonicity-Preserving (MP) finite difference methods recently developed for direct numerical simulation (DNS) and large-eddy simulation (LES) of high-speed turbulent flows. The MP method has been implemented together with high-order compact (COMP) and weighted essentially non- oscillatory (WENO) methods in a generalized three-dimensional (3D) code and has been applied to various 1D, 2D and 3D problems. For the LES, compressible versions of the gradient-based subgrid-scale closures are employed. Detailed and extensive analysis of various flows indicates that MP schemes have less numerical dissipation and faster grid convergence than WENO schemes. Simulations conducted with high-order MP schemes preserve sharp changes in flow variables without spurious oscillations and capture the turbulence at the smallest simulated scales. The non-conservative form of the scalar equation solved with MP schemes are shown to generate the same results as COMP schemes for supersonic mixing problems involving shock waves.

%B 47th AIAA Aerospace Sciences Meeting %I American Institute of Aeronautics and Astronautics %C Orlando, FL %8 01/2009 %G eng %0 Journal Article %J The Journal of Chemical Physics %D 2009 %T Local Correlation Calculations Using Standard and Renormalized Coupled-Cluster Approaches %A Wei Li %A Piotr Piecuch %A J. R Gour %A Shuhua Li %Xhe linear scaling local correlation approach, termed “cluster-in-molecule” (CIM), is extended to the coupled-cluster (CC) theory with singles and doubles (CCSD) and CC methods with singles, doubles, and noniterative triples, including CCSD(T) and the completely renormalized CR-CC(2,3) approach. The resulting CIM-CCSD, CIM-CCSD(T), and CIM-CR-CC(2,3) methods are characterized by (i) the linear scaling of the CPU time with the system size, (ii) the use of orthonormal orbitals in the CC subsystem calculations, (iii) the natural parallelism, (iv) the high computational efficiency, enabling calculations for much larger systems and at higher levels of CC theory than previously possible, and (v) the purely noniterative character of local triples corrections. By comparing the results of the canonical and CIM-CC calculations for normal alkanes and water clusters, it is shown that the CIM-CCSD, CIM-CCSD(T), and CIM-CR-CC(2,3) approaches accurately reproduce the corresponding canonical CC correlation and relative energies, while offering savings in the computer effort by orders of magnitude.

%B The Journal of Chemical Physics %V 131 %8 09/2009 %G eng %N 11 %0 Conference Paper %B National Combustion Meeting %D 2009 %T A New Model for Numerical Simulations of Two-Phase Turbulent Combustion %A Li, Z. %A Jaberi, F.A. %B National Combustion Meeting %I National Combustion Meeting %C Ann Arbor, MI %8 05/2009 %G eng %0 Journal Article %J Strategic Management Journal %D 2009 %T Strategies for Online Communities %A Miller, K. D. %A Fabian, F. H. %A Lin, S. %B Strategic Management Journal %V 51 %P 808-822 %G eng %0 Journal Article %J Physical Review Letters %D 2009 %T Survey of Excited State Neutron Spectroscopic Factors for Z=8-28 Nuclei %A M. B. Tsang %A Jenny Lee %A S. C. Su %A J. Y. Dai %A M. Horoi %A H. Liu %A W. G. Lynch %A S. Warren %XWe have extracted 565 neutron spectroscopic factors of sd and fp shell nuclei by systematically analyzing more than 2000 measured (d, p) angular distributions. We are able to compare 125 of the extracted spectroscopic factors to values predicted by large-basis shell-model calculations and evaluate the accuracies of spectroscopic factors predicted by different shell-model interactions in these regions. We find that the spectroscopic factors predicted for most excited states of sd-shell nuclei using the latest {USDA} or {USDB} interactions agree with the experimental values. For fp shell nuclei, the inability of the current models to account for the core excitation and fragmentation of the states leads to considerable discrepancies. In particular, the agreement between data and shell-model predictions for Ni isotopes is not better than a factor of 2 using either the {GXPF1A} or the {XT} interaction.

%B Physical Review Letters %V 102 %P 062501 %8 01/2009 %G eng %0 Journal Article %J Physics of Fluids %D 2009 %T Turbulence-Interface Interactions in a Two-Fluid Homogeneous Flow %A Li, Z. %A Jaberi, F.A. %XThe two-way interactions between the turbulent velocity field and the interface in an incompressible two-fluid homogeneous turbulent flow are studied with a recently developed Lagrangian–Eulerian interfacial particle level-set method. The numerical results confirm that the rate of change of the interface area is directly related to the work done by the surface tension force. While the surface tension damps the surrounding turbulence in the “interface stretching period” to oppose the increase in interface area, it is shown to actually increase the turbulent kinetic energy when the interface experiences compression. Additionally, the surface tension force is found to generate strong vortical motions close to the interface through the baroclinic torque effects. There is also an increase in strain rate and the viscous dissipation rate of turbulent kinetic energy in the interface region. The effect of interface on the surrounding turbulence appears primarily in the direction perpendicular to the interface. Analysis of the vorticity and kinetic energy equations indicates that the turbulence-interface interactions are strongly dependent on the fluids’ density ratio and the Weber number.

%B Physics of Fluids %V 21 %8 09/2009 %G eng %N 9 %0 Journal Article %J J. Heat Transfer %D 2008 %T Ab-initio Molecular Dynamics Study of Nanoscale Thermal Energy Transport %A Tengfei Luo %A John R. Lloyd %B J. Heat Transfer %V 130 %G eng %0 Journal Article %J Theoretical Chemistry Accounts: Theory, Computation, and Modeling (THEORETICA CHIMICA ACTA) %D 2008 %T Application of Renormalized Coupled- Cluster Methods to Potential Function of Water %A J. Zheng %A J. R Gour %A J.J. Lutz %A M. Wloch %A Piotr Piecuch %A Truhlar, D.G. %XThe goal of this paper is to examine the performance of the conventional and renormalized single-reference coupled-cluster (CC) methods in calculations of the potential energy surface of the water molecule. A comparison with the results of the internally contracted multi-reference configuration interaction calculations including the quasi-degenerate Davidson correction (MRCI(Q)) and the spectroscopically accurate potential energy surface of water resulting from the use of the energy switching (ES) approach indicates that the relatively inexpensive completely renormalized (CR) CC methods with singles (S), doubles (D), and a non-iterative treatment of triples (T) or triples and quadruples (TQ), such as CR-CCSD(T), CR-CCSD(TQ), and the recently developed rigorously size extensive extension of CR-CCSD(T), termed CR-CC(2,3), provide substantial improvements in the results of conventional CCSD(T) and CCSD(TQ) calculations at larger internuclear separations. It is shown that the CR-CC(2,3) results corrected for the effect of quadruply excited clusters through the CR-CC(2,3)+Q approach can compete with the highly accurate MRCI(Q) data. The excellent agreement between the CR-CC(2,3)+Q and MRCI(Q) results suggests ways of improving the global potential energy surface of water resulting from the use of the ES approach in the regions of intermediate bond stretches and intermediate energies connecting the region of the global minimum with the asymptotic regions.

%B Theoretical Chemistry Accounts: Theory, Computation, and Modeling (THEORETICA CHIMICA ACTA) %V 120 %P 59-78 %G eng %N 1-3 %0 Journal Article %J \apjl %D 2008 %T The Biermann Battery in Cosmological MHD Simulations of Population III Star Formation %A Xu, H. %A O'Shea, B. W. %A Collins, D. C. %A Norman, M. L. %A Li, H. %A Shuhua Li %K cosmology: theory %K Galaxies: High-Redshift %K Magnetohydrodynamics: MHD %K stars: formation %B \apjl %V 688 %P L57-L60 %8 dec %G eng %0 Journal Article %J The Journal of Chemical Physics %D 2008 %T A Comparative Assessment of the Perturbative and Renormalized Coupled Cluster Theories with a Non-iterative Treatment of Triple Excitations for Thermochemical Kinetics, Including a Study of Basis Set and Core Correlation E %A J. Zheng %A J. R Gour %A J.J. Lutz %A M. Wloch %A Piotr Piecuch %A Truhlar, D.G. %XThe CCSD, CCSD(T), and CR-CC(2,3) coupled cluster methods, combined with five triple-zeta basis sets, namely, MG3S, aug-cc-pVTZ, aug-cc-pV(T+d)Z, aug-cc-pCVTZ, and aug-cc-pCV(T+d)Z, are tested against the DBH24 database of diverse reaction barrier heights. The calculations confirm that the inclusion of connected triple excitations is essential to achieving high accuracy for thermochemical kinetics. They show that various noniterative ways of incorporating connected triple excitations in coupled cluster theory, including the CCSD(T) approach, the full CR-CC(2,3) method, and approximate variants of CR-CC(2,3) similar to the triples corrections of the CCSD(2) approaches, are all about equally accurate for describing the effects of connected triply excited clusters in studies of activation barriers. The effect of freezing core electrons on the results of the CCSD, CCSD(T), and CR-CC(2,3) calculations for barrier heights is also examined. It is demonstrated that to include core correlation most reliably, a basis set including functions that correlate the core and that can treat core-valence correlation is required. On the other hand, the frozen-core approximation using valence-optimized basis sets that lead to relatively small computational costs of CCSD(T) and CR-CC(2,3) calculations can achieve almost as high accuracy as the analogous fully correlated calculations.

%B The Journal of Chemical Physics %V 128 %8 01/2008 %G eng %N 4 %0 Conference Paper %B 46th AIAA Aerospace Sciences Meeting and Exhibit %D 2008 %T Filtered Mass Density Function for Numerical Simulations of Spray Combustion %A Li, Z. %A Jaberi, F.A. %A Yaldizli, M. %XThis paper briefly describes our recent efforts on the modeling and numerical simulations of two-phase turbulent reacting flows in realistic combustion systems with a new large-eddy simulation (LES) model. The model is constructed based on the two-phase extension of scalar filtered mass density function (FMDF) and a Lagrangian-Eulerian- Lagrangian mathematical/numerical methodology. In this methodology, the “resolved” fluid velocity field is obtained by solving the filtered form of the compressible Navier-Stokes equations with a high-order finite difference scheme. The liquid (droplet) phase and scalar (temperature and species mass fractions) fields are both obtained by stochastic Lagrangian models. There are two-way interactions between the phases and all the Eulerian and Lagrangian fields. The LES/FMDF is used for systematic analysis of turbulent combustion in the spray-controlled dump combustor and double-swirl spray burner for various flow and spray parameters. The effects of fuel type, spray angle, mass loading ratio, droplet size distribution, fuel/air composition, wall, and inflow/outflow conditions on the combustion are investigated. It has been found that the main features of the turbulence and combustion are modified by changing the inflow/outflow conditions. The LES/FMDF results also confirm the significance of the spray parameters.

%B 46th AIAA Aerospace Sciences Meeting and Exhibit %I AIAA %C Reno, Nevada %8 01/2008 %G eng %0 Journal Article %J International Journal for Numerical Methods in Fluids %D 2008 %T A Hybrid Langrangian-Eulerian Particle-Level Set Method for numerical Simulations of Two-Fluid Turbulent Flows %A Li, Z. %A Jaberi, F.A. %A Shih, T. I-P. %K two-fluid turbulent flows; particle-level set method; interface tracking %XA coupled Lagrangian interface-tracking and Eulerian level set (LS) method is developed and implemented for numerical simulations of two-fluid flows. In this method, the interface is identified based on the locations of notional particles and the geometrical information concerning the interface and fluid properties, such as density and viscosity, are obtained from the LS function. The LS function maintains a signed distance function without an auxiliary equation via the particle-based Lagrangian re-initialization technique. To assess the new hybrid method, numerical simulations of several ‘standard interface-moving’ problems and two-fluid laminar and turbulent flows are conducted. The numerical results are evaluated by monitoring the mass conservation, the turbulence energy spectral density function and the consistency between Eulerian and Lagrangian components. The results of our analysis indicate that the hybrid particle-level set method can handle interfaces with complex shape change, and can accurately predict the interface values without any significant (unphysical) mass loss or gain, even in a turbulent flow. The results obtained for isotropic turbulence by the new particle-level set method are validated by comparison with those obtained by the ‘zero Mach number’, variable-density method. For the cases with small thermal/mass diffusivity, both methods are found to generate similar results. Analysis of the vorticity and energy equations indicates that the destabilization effect of turbulence and the stability effect of surface tension on the interface motion are strongly dependent on the density and viscosity ratios of the fluids. Copyright q 2007 John Wiley & Sons, Ltd.

%B International Journal for Numerical Methods in Fluids %V 56 %P 2271-2300 %8 4/2008 %G eng %N 12 %0 Journal Article %J Physics Letters B %D 2008 %T The influence of cluster emission and the symmetry energy on neutron-proton spectral double ratios %A Yingxun Zhang %A P. Danielewicz %A M. Famiano %A Li, Z. %A W. G. Lynch %A M. B. Tsang %XThe emissions of neutrons, protons and bound clusters from central {124Sn} + {124Sn} and {112Sn} + {112Sn} collisions are simulated using the Improved Quantum Molecular Dynamics model for two different density-dependent symmetry-energy functions. The calculated neutron-proton spectral double ratios for these two systems are sensitive to the density dependence of the symmetry energy, consistent with previous work. Cluster emission increases the double ratios in the low energy region relative to values calculated in a coalescence-invariant approach. To circumvent uncertainties in cluster production and secondary decays, it is important to have more accurate measurements of the neutron-proton ratios at higher energies in the center of mass system, where the influence of such effects is reduced.

%B Physics Letters B %V 664 %P 145–148 %8 02/2008 %G eng %0 Conference Paper %B 46TH AIAA Aerospace Sciences Meeting and Exhibit %D 2008 %T Large Eddy Simulations of Two-Phase Turbulent Reacting Flows %A Jaberi, F.A. %A Li, Z. %B 46TH AIAA Aerospace Sciences Meeting and Exhibit %I AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS %C Reno, Nevada %8 01/2008 %G eng %L AIAA 2008-1154 %0 Journal Article %J PLoS Computational Biology %D 2008 %T Natural selection fails to optimize mutation rates for long-term adaptation on rugged fitness landscapes %A Clune, J. %A Misevic, D. %A Ofria, C. %A Lenski, R.E. %A Elena, S.F. %A Sanjuán, R. %B PLoS Computational Biology %I Public Library of Science %V 4 %P e1000187 %G eng %0 Journal Article %J Physical Review C %D 2008 %T Transport Model Simulations of Projectile Fragmentation Reactions at 140 {MeV/nucleon} %A M. Mocko %A M. B. Tsang %A D. Lacroix %A A. Ono %A P. Danielewicz %A W. G. Lynch %A R. J Charity %K Nuclear Experiment %K Nuclear Theory %XThe collisions in four different reaction systems using {\$ˆ{40,48}\$Ca} and {\$ˆ{58,64}\$Ni} isotope beams and a Be target have been simulated using the Heavy Ion Phase Space Exploration and the Antisymmetrized Molecular Dynamics models. The present study mainly focuses on the model predictions for the excitation energies of the hot fragments and the cross sections of the final fragments produced in these reactions. The effects of various factors influencing the final fragment cross sections, such as the choice of the statistical decay code and its parameters have been explored. The predicted fragment cross sections are compared to the projectile fragmentation cross sections measured with the A1900 mass separator. At {\$E/A=140\$} {MeV,} reaction dynamics can significantly modify the detection efficiencies for the fragments and make them different from the efficiencies applied to the measured data reported in the previous work. The effects of efficiency corrections on the validation of event generator codes are discussed in the context of the two models.

%B Physical Review C %V 78 %8 08/2008 %G eng %N 2 %0 Journal Article %J Physical Review Lettters %D 2007 %T Coupled-Cluster and Configuration-Interaction Calculations for Heavy Nuclei %A M. Horoi %A J. R Gour %A M. Wloch %A M.D. Lodriguito %A B. A. Brown %A Piotr Piecuch %XWe compare coupled-cluster (CC) and configuration-interaction (CI) results for 56Ni obtained in the pf-shell basis, focusing on practical CC approximations that can be applied to systems with dozens or hundreds of correlated fermions. The weight of the reference state and the strength of correlation effects are controlled by the gap between the f7/2 orbit and the f5/2, p3/2, p1/2 orbits. Independent of the gap, the CC method with 1p-1h and 2p-2h clusters and a noniterative treatment of 3p-3h clusters is as accurate as the more demanding CI approach truncated at the 4p-4h level.

%B Physical Review Lettters %V 98 %P 4 pages %8 03/2007 %G eng %N 11 %0 Conference Paper %B 46th AIAA Aerospace Sciences Meeting and Exhibit %D 2007 %T Filtered Mass Density Function for Numerical Simulations of Spray Combustion %A Yaldizli, M. %A Li, Z. %A Jaberi, F.A. %XThis paper briefly describes our recent efforts on the modeling and numerical simulations of two-phase turbulent reacting flows in realistic combustion systems with a new large-eddy simulation (LES) model. The model is constructed based on the two-phase extension of scalar filtered mass density function (FMDF) and a Lagrangian-Eulerian- Lagrangian mathematical/numerical methodology. In this methodology, the “resolved” fluid velocity field is obtained by solving the filtered form of the compressible Navier-Stokes equations with a high-order finite difference scheme. The liquid (droplet) phase and scalar (temperature and species mass fractions) fields are both obtained by stochastic Lagrangian models. There are two-way interactions between the phases and all the Eulerian and Lagrangian fields. The LES/FMDF is used for systematic analysis of turbulent combustion in the spray-controlled dump combustor and double-swirl spray burner for various flow and spray parameters. The effects of fuel type, spray angle, mass loading ratio, droplet size distribution, fuel/air composition, wall, and inflow/outflow conditions on the combustion are investigated. It has been found that the main features of the turbulence and combustion are modified by changing the inflow/outflow conditions. The LES/FMDF results also confirm the significance of the spray parameters.

%B 46th AIAA Aerospace Sciences Meeting and Exhibit %I AIAA %C Reno, Nevada %8 01/2008 %G eng %0 Conference Paper %B Proceedings of the 43rd AIAA/ASME/SAI/ASEE Joint Propulsion Conference %D 2007 %T A New Model for Large Eddy Simulations of Multi-Phase Turbulent Combustion %A Yaldizli, M. %A Li, Z. %A J.A. Jaberi %XNumerical simulations of a spray-controlled lean premixed dump combustor are con- ducted via a two-phase large eddy simulation (LES) methodology. In this methodology, the velocity field is obtained by a high-order finite difference method. The subgrid gas- liquid combustion closure is based on the two-phase filtered mass density function (FMDF) method and the spray is modeled with a Lagrangian scheme. The effects of spray, fuel/air composition, and inflow/outflow conditions on the combustion are investigated. It has been found that the main features of the turbulence and combustion inside the dump combustor are very differently modified by the spray for different spray parameters. The LES/FMDF results also indicate the significance of the inflow and outflow conditions.

%B Proceedings of the 43rd AIAA/ASME/SAI/ASEE Joint Propulsion Conference %I AIAA/ASME/SAI/ASEE %C Cincinnati, Ohio %8 07/2007 %G eng %0 Conference Proceedings %B ASME Conference Proceedings, Computers and Information in Engineering Conference %D 2007 %T Numerical Simulations of Two-Phase Turbulent Combustion in Spray Burners %A Li, Z. %A Yaldizli, M. %A Jaberi, F.A. %XThe complex interactions among turbulence, combustion and spray in liquid-fuel burners are modeled and simulated via a new two-phase Lagrangian-Eulerian-Lagrangian large eddy simulation (LES) methodology. In this methodology, the spray is modeled with a Lagrangian mathematical/computational method which allows two-way mass, momentum and energy coupling between phases. The subgrid gas-liquid combustion is based on the two-phase filtered mass density function (FMDF) that has several advantages over “conventional” two-phase combustion models. The LES/FMDF is employed in conjunction with non-equilibrium reaction and droplet models. Simulations of turbulent combustion in a spray-controlled double-swirl burner are conducted via LES/FMDF. The generated results are used for better understanding of spray combustion in realistic turbulent flow configurations. The effects of spray angle, mass loading ratio, fuel type, droplet size distribution, wall and inflow/outflow conditions on the flow and combustion are investigated. The LES/FMDF predictions are shown to be consistent with the experimental results.

%B ASME Conference Proceedings, Computers and Information in Engineering Conference %I ASME %C Las Vegas, Nevada %8 09/2007 %@ 0-7918-4803-5 %G eng %0 Journal Article %J Physical Review C %D 2006 %T Half-life and spin of 60Mng %A S. N. Liddick %A P. F. Mantica %A B. A. Brown %A M. P. Carpenter %A A. D. Davies %A M. Horoi %A R. V. F. Janssens %A A. C. Morton %A W. F. Mueller %A J. Pavan %A H. Schatz %A A. Stolz %A S. L. Tabor %A B. E. Tomlin %A M. Wiedeking %XA value of 0.28±0.02 s has been deduced for the half-life of the ground state of {60Mn,} in sharp contrast to the previously adopted value of 51±6 s. Access to the low-spin {60Mn} ground state was accomplished via β decay of the 0+ {60Cr} parent nuclide. New low-energy states in {60Mn} have been identified from β-delayed γ-ray spectroscopy. The new, shorter half-life of {60Mng} is not suggestive of isospin-forbidden β decay, and new spin and parity assignments of 1+ and 4+ have been adopted for the ground and isomeric β-decaying states, respectively, of {60Mn.}

%B Physical Review C %V 73 %P 044322 %8 04/2006 %G eng %N 4 %0 Journal Article %J PHYSICAL REVIEW C %D 2006 %T Half-life and spin of 60Mng %A S. N. Liddick %A P. F. Mantica %A B. A. Brown %A M. P. Carpenter %A A. D. Davies %A M. Horoi %A R. V. F. Janssens %A A. C. Morton %A W. F. Mueller %A J. Pavan %A H. Schatz %A A. Stolz %A S. L. Tabor %A B. E. Tomlin %A M. Wiedeking %B PHYSICAL REVIEW C %V 73 %8 04/2006 %G eng %U http://journals.aps.org/prc/abstract/10.1103/PhysRevC.73.044322 %N 4 %0 Journal Article %J Journal of Molecular Structure: THEOCHEM %D 2006 %T Non-Iterative Coupled- Cluster Methods Employing Multi-Reference Perturbation Theory Wave Functions %A Piotr Piecuch %A M.D. Lodriguito %A K. Kowalski %A M. Wloch %K Coupled-cluster theory; Equation-of-motion coupled-cluster methods; Method of moments of coupled-cluster equations; Multi-reference perturbation theory; Non-iterative coupled-cluster methods %XA new class of non-iterative coupled-cluster (CC) methods, which improve the results of standard CC and equation-of-motion (EOM) CC calculations for ground and excited-state potential energy surfaces along bond breaking coordinates and for excited states dominated by two-electron transitions, is explored. The proposed approaches combine the method of moments of coupled-cluster equations (MMCC), in which the a posteriori corrections due to higher-order correlations are added to standard CC/EOMCC energies, with the multi-reference many-body perturbation theory (MRMBPT), which provides information about the most essential non-dynamic and dynamic correlation effects that are relevant to electronic quasi-degeneracies. The performance of the basic MRMBPT-corrected MMCC approximation, in which inexpensive non-iterative corrections due to triple excitations are added to ground- and excited-state energies obtained with the CC/EOMCC singles and doubles approach, is illustrated by the results of a few test calculations, including bond breaking in HF and H2O, and excited states of CH+.

%B Journal of Molecular Structure: THEOCHEM %V 771 %P 89-104 %8 10/2006 %G eng %N 1-3 %0 Book Section %B Progress in Theoretical Chemistry and Physics %D 2006 %T Non-iterative Coupled-Cluster Methods for Excited Electronic States %A Piotr Piecuch %A M. Wloch %A M. Lodriguito %A J. R Gour %B Progress in Theoretical Chemistry and Physics %V 15 %P 45-106 %G eng %0 Journal Article %J Molecular Physics %D 2006 %T Two New Classes of Non-Iterative Coupled-Cluster Methods Derived from the Method of Moments of Coupled-Cluster Equations %A Piotr Piecuch %A M. Wloch %A M.D. Logriguito %A J. R Gour %B Molecular Physics %V 104 %P 2149-2172 %8 7/2006 %G eng %N 13 & 14 %0 Journal Article %J Theoretical Chemistry Accounts: Theory, Computation, and Modeling %D 2004 %T Method of moments of coupled-cluster equations: a new formalism for designing accurate electronic structure methods for ground and excited states %A Piotr Piecuch %A K. Kowalski %A I. S. O. Pimienta %A P.-D. Fan %A M.D. Lodriguito %A M. J. {McGuire} %A S. A. Kucharski %A T. Kuś %A M. Musial %K Coupled-cluster theory - Method of moments of coupled-cluster equations - Renormalized coupled-cluster methods - extended coupled cluster theory - Potential energy surfaces %XThe method of moments of coupled-cluster equations {(MMCC),} which provides a systematic way of improving the results of the standard coupled-cluster {(CC)} and equation-of-motion {CC} {(EOMCC)} calculations for the ground- and excited-state energies of atomic and molecular systems, is described. The {MMCC} theory and its generalized {MMCC} {(GMMCC)} extension that enables one to use the cluster operators resulting from the standard as well as nonstandard {CC} calculations, including those obtained with the extended {CC} {(ECC)} approaches, are based on rigorous mathematical relationships that define the many-body structure of the differences between the full configuration interaction {(CI)} and {CC} or {EOMCC} energies. These relationships can be used to design the noniterative corrections to the {CC/EOMCC} energies that work for chemical bond breaking and potential energy surfaces of excited electronic states, including excited states dominated by double excitations, where the standard single-reference {CC/EOMCC} methods fail. Several {MMCC} and {GMMCC} approximations are discussed, including the renormalized and completely renormalized {CC/EOMCC} methods for closed- and open-shell states, the quadratic {MMCC} approaches, the {CI-corrected} {MMCC} methods, and the {GMMCC} approaches for multiple bond breaking based on the {ECC} cluster amplitudes.

%B Theoretical Chemistry Accounts: Theory, Computation, and Modeling %V 112 %P 349–393 %8 07/2004 %G eng