The dynamic behavior of the slip length in a fluid flow confined between atomically smooth surfaces is investigated using molecular dynamics simulations. At weak wall-fluid interactions, the slip length increases nonlinearly with the shear rate provided that the liquid/solid interface forms incommensurable structures. A gradual transition to the linear rate dependence is observed upon increasing the wall-fluid interaction. We found that the slip length can be well described by a function of a single variable that in turn depends on the in-plane structure factor, contact density, and temperature of the first fluid layer near the solid wall. Extensive simulations show that this formula is valid in a wide range of shear rates and wall-fluid interactions.

%B Physical Review E %V 75 %P 51605 %8 05/2007 %G eng %N 5