The method of moments of coupled-cluster equations (MMCC) is extended to potential energy surfaces involving multiple bond breaking by developing the quasi-variational (QV) and quadratic (Q) variants of the MMCC theory. The QVMMCC and QMMCC methods are related to the extended CC (ECC) theory, in which products involving cluster operators and their deexcitation counterparts mimic the effects of higher-order clusters. The test calculations for N2 show that the QMMCC and ECC methods can provide spectacular improvements in the description of multiple bond breaking by the standard CC approaches.

JF - Electron Correlation Methodology T3 - ACS Symposium Series PB - American Chemical Sociegy CY - Washington, DC VL - 958 SN - ISBN13: 9780841238435 ER - TY - JOUR T1 - Non-Iterative Coupled- Cluster Methods Employing Multi-Reference Perturbation Theory Wave Functions JF - Journal of Molecular Structure: THEOCHEM Y1 - 2006 A1 - Piotr Piecuch A1 - M.D. Lodriguito A1 - K. Kowalski A1 - M. Wloch KW - Coupled-cluster theory; Equation-of-motion coupled-cluster methods; Method of moments of coupled-cluster equations; Multi-reference perturbation theory; Non-iterative coupled-cluster methods AB -A new class of non-iterative coupled-cluster (CC) methods, which improve the results of standard CC and equation-of-motion (EOM) CC calculations for ground and excited-state potential energy surfaces along bond breaking coordinates and for excited states dominated by two-electron transitions, is explored. The proposed approaches combine the method of moments of coupled-cluster equations (MMCC), in which the a posteriori corrections due to higher-order correlations are added to standard CC/EOMCC energies, with the multi-reference many-body perturbation theory (MRMBPT), which provides information about the most essential non-dynamic and dynamic correlation effects that are relevant to electronic quasi-degeneracies. The performance of the basic MRMBPT-corrected MMCC approximation, in which inexpensive non-iterative corrections due to triple excitations are added to ground- and excited-state energies obtained with the CC/EOMCC singles and doubles approach, is illustrated by the results of a few test calculations, including bond breaking in HF and H2O, and excited states of CH+.

VL - 771 IS - 1-3 ER - TY - JOUR T1 - Noniterative Corrections to Extended Coupled-Cluster Energies Employing the Generalized Method of Moments of Coupled-Cluster Equations JF - Molecular Physics Y1 - 2005 A1 - Piotr Piecuch A1 - {P.-D.} Fan A1 - K. Kowalski AB -It is shown that the extended coupled-cluster method with singles and doubles (ECCSD) does not suffer from the non-variational collapse observed in the standard CCSD calculations when multiple bond breaking is examined. This interesting feature of the single-reference ECCSD theory is used to design the non-iterative CC methods with singles, doubles and non-iterative triples and quadruples, which provide a highly accurate and variational description of potential energy surfaces involving multiple bond breaking with computational steps that scale as with the system size. This is accomplished with the help of the generalized version of the method of moments of coupled-cluster equations (GMMCC), which can be used to correct the results of non-standard CC calculations, such as ECCSD. The theoretical considerations are illustrated by the preliminary results of the ECCSD-based GMMCC calculations for triple bond breaking in N2. Keywords: Coupled-cluster theory; Extended coupled-cluster method; Method of moments of coupled-cluster equations; Non-iterative coupled-cluster approaches; Bond breaking

VL - 103 IS - 15 & 16 ER - TY - JOUR T1 - Nuclear Structure Calculations with Coupled-Cluster Methods from Quantum Chemistry JF - Nuclear Physics A Y1 - 2005 A1 - Piotr Piecuch A1 - D. J. Dean A1 - J. R Gour A1 - G. Hagen A1 - M. {Hjorth-Jensen} A1 - K. Kowalski A1 - T. Papenbrock A1 - M. Wloch AB -We present several coupled-cluster calculations of ground and excited states of 4He and 16O employing methods from quantum chemistry. A comparison of coupled cluster results with the results of exact diagonalization of the hamiltonian in the same model space and other truncated shell-model calculations shows that the quantum chemistry inspired coupled cluster approximations provide an excellent description of ground and excited states of nuclei, with much less computational effort than traditional large-scale shell-model approaches. Unless truncations are made, for nuclei like 16O, full-fledged shell-model calculations with four or more major shells are not possible. However, these and even larger systems can be studied with the coupled cluster methods due to the polynomial rather than factorial scaling inherent in standard shell-model studies. This makes the coupled cluster approaches, developed in quantum chemistry, viable methods for describing weakly bound systems of interest for future nuclear facilities.

VL - 752 ER -