The scalar filtered mass density function (FMDF) is further developed and employed for large-eddy simulations (LES) of high speed turbulent flows in complex geometries. LES/FMDF is implemented via an efficient, hybrid numerical method. In this method, the filtered compressible Navier-Stokes equations in curvilinear coordinate systems are solved with a generalized, high-order, multi-block, compact differencing scheme. Turbulent mixing and combustion are modeled with the FMDF. The LES/FMDF method is used for simulations of isotropic turbulent flow in a piston-cylinder assembly, the flow in a shock tube and a supersonic co-axial helium-air jet. The critical role of pressure in the FMDF equation when applied to compressible flows is studied. It is shown that LES/FMDF is reliable and is able to simulate compressible turbulent mixing and combustion in supersonic flows.

1 aLi, Z.1 aJaberi, F.A.1 aBanaeizadeh, A. uhttps://icer.msu.edu/research/publications/large-scale-simulations-supersonic-turbulent-reacting-flows01565nas a2200121 4500008004100000245005800041210005700099260007700156520108400233100001101317700001701328856009801345 2009 eng d00aLarge-Scale Simulations of High Speed Turbulent Flows0 aLargeScale Simulations of High Speed Turbulent Flows aOrlando, FLbAmerican Institute of Aeronautics and Astronauticsc01/20093 aThis paper briefly describes a new class of high-order Monotonicity-Preserving (MP) finite difference methods recently developed for direct numerical simulation (DNS) and large-eddy simulation (LES) of high-speed turbulent flows. The MP method has been implemented together with high-order compact (COMP) and weighted essentially non- oscillatory (WENO) methods in a generalized three-dimensional (3D) code and has been applied to various 1D, 2D and 3D problems. For the LES, compressible versions of the gradient-based subgrid-scale closures are employed. Detailed and extensive analysis of various flows indicates that MP schemes have less numerical dissipation and faster grid convergence than WENO schemes. Simulations conducted with high-order MP schemes preserve sharp changes in flow variables without spurious oscillations and capture the turbulence at the smallest simulated scales. The non-conservative form of the scalar equation solved with MP schemes are shown to generate the same results as COMP schemes for supersonic mixing problems involving shock waves.

1 aLi, Z.1 aJaberi, F.A. uhttps://icer.msu.edu/research/publications/large-scale-simulations-high-speed-turbulent-flows00522nas a2200121 4500008004100000050001900041245006500060210006400125260007800189100001700267700001100284856010500295 2008 eng d aAIAA 2008-115400aLarge Eddy Simulations of Two-Phase Turbulent Reacting Flows0 aLarge Eddy Simulations of TwoPhase Turbulent Reacting Flows aReno, NevadabAMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICSc01/20081 aJaberi, F.A.1 aLi, Z. uhttps://icer.msu.edu/research/publications/large-eddy-simulations-two-phase-turbulent-reacting-flows