The filtered mass density function (FMDF) model (Jaberi et al. 1999 [1]) is employed for large eddy simulations (LES) of “high speed” partially-premixed methane jet flames with the “flamelet” and “finite-rate” kinetics models. The FMDF is the joint probability density function (PDF) of the scalars and is determined via the solution of a set of stochastic differential equations. The LES/FMDF is implemented using a highly scalable, parallel hybrid Eulerian–Lagrangian numerical scheme. The LES/FMDF results are shown to compare well with the experimental data for all flow conditions when “appropriate” reaction and mixing models are employed.

10aFiltered mass density function; PDF methods; Monte-Carlo simulations; Methane jet flames10aLES1 aYaldizli, M.1 aMehravaran, K.1 aJaberi, F.A. uhttps://icer.msu.edu/research/publications/large-eddy-simulations-turbulent-methane-jet-flames-filtered-mass-density-001381nas a2200133 4500008004100000245006700041210006600108260003100174520088700205100001101092700001701103700002001120856010701140 2010 eng d00aLarge-Scale Simulations of Supersonic Turbulent Reacting Flows0 aLargeScale Simulations of Supersonic Turbulent Reacting Flows aOrlando, FLbAIAAc01/20103 aThe scalar filtered mass density function (FMDF) is further developed and employed for large-eddy simulations (LES) of high speed turbulent flows in complex geometries. LES/FMDF is implemented via an efficient, hybrid numerical method. In this method, the filtered compressible Navier-Stokes equations in curvilinear coordinate systems are solved with a generalized, high-order, multi-block, compact differencing scheme. Turbulent mixing and combustion are modeled with the FMDF. The LES/FMDF method is used for simulations of isotropic turbulent flow in a piston-cylinder assembly, the flow in a shock tube and a supersonic co-axial helium-air jet. The critical role of pressure in the FMDF equation when applied to compressible flows is studied. It is shown that LES/FMDF is reliable and is able to simulate compressible turbulent mixing and combustion in supersonic flows.

1 aLi, Z.1 aJaberi, F.A.1 aBanaeizadeh, A. uhttps://icer.msu.edu/research/publications/large-scale-simulations-supersonic-turbulent-reacting-flows01283nas a2200133 4500008004100000245009500041210006900136260005900205520071100264100001700975700001900992700001701011856012101028 2009 eng d00aLarge-Eddy Simulations of Turbulent Methane Jet Flames with Filtered Mass Density Function0 aLargeEddy Simulations of Turbulent Methane Jet Flames with Filte aAnn Arbor, MichiganbThe Combustion Institutec05/20093 aThe filtered mass density function (FMDF) model (Jaberi et al. 1999 [1]) is employed for large eddy simulations (LES) of “high speed” partially-premixed methane jet flames with the “flamelet” and “finite-rate” kinetics models. The FMDF is the joint probability density function (PDF) of the scalars and is determined via the solution of a set of stochastic differential equations. The LES/FMDF is implemented using a highly scalable, parallel hybrid Eulerian–Lagrangian numerical scheme. The LES/FMDF results are shown to compare well with the experimental data for all flow conditions when “appropriate” reaction and mixing models are employed.

1 aYaldizli, M.1 aMehravaran, K.1 aJaberi, F.A. uhttps://icer.msu.edu/research/publications/large-eddy-simulations-turbulent-methane-jet-flames-filtered-mass-density01565nas a2200121 4500008004100000245005800041210005700099260007700156520108400233100001101317700001701328856009801345 2009 eng d00aLarge-Scale Simulations of High Speed Turbulent Flows0 aLargeScale Simulations of High Speed Turbulent Flows aOrlando, FLbAmerican Institute of Aeronautics and Astronauticsc01/20093 aThis paper briefly describes a new class of high-order Monotonicity-Preserving (MP) finite difference methods recently developed for direct numerical simulation (DNS) and large-eddy simulation (LES) of high-speed turbulent flows. The MP method has been implemented together with high-order compact (COMP) and weighted essentially non- oscillatory (WENO) methods in a generalized three-dimensional (3D) code and has been applied to various 1D, 2D and 3D problems. For the LES, compressible versions of the gradient-based subgrid-scale closures are employed. Detailed and extensive analysis of various flows indicates that MP schemes have less numerical dissipation and faster grid convergence than WENO schemes. Simulations conducted with high-order MP schemes preserve sharp changes in flow variables without spurious oscillations and capture the turbulence at the smallest simulated scales. The non-conservative form of the scalar equation solved with MP schemes are shown to generate the same results as COMP schemes for supersonic mixing problems involving shock waves.

1 aLi, Z.1 aJaberi, F.A. uhttps://icer.msu.edu/research/publications/large-scale-simulations-high-speed-turbulent-flows01658nas a2200133 4500008004100000245006400041210006300105260005900168520114000227100002001367700001901387700001701406856010101423 2009 eng d00aLES/FMDF of Spray Combustion in Internal Combustion Engines0 aLESFMDF of Spray Combustion in Internal Combustion Engines aAnn Arbor, MichiganbThe Combustion Institutec05/20063 aThe two-phase filtered mass density function (FMDF) model is employed for large-eddy simulation (LES) of turbulent spray combustion in internal combustion (IC) engines. The LES/FMDF is implemented with an efficient, hybrid numerical method. In this method, the filtered compressible Navier-Stokes equations in curvilinear coordinate systems are solved with a generalized, high-order, multi-block, compact differencing scheme. The spray and the FMDF are implemented with Lagrangian methods. The LES/FMDF methodology has been used for simulations of turbulent combustion in a rapid compression machine (RCM) and in a direct-injection spark-ignition (DISI) engine. For both RCM and DISI engine, the complex interactions among turbulent velocity, fuel droplets and combustion are shown to be well captured with the LES/FMDF. The results for the DISI engine indicate that the size, velocity, evaporation and combustion of the sprayed fuel droplets are strongly affected by the unsteady, vortical motions generated by the incoming air during the intake stroke. In turn, the droplets are found to change the in-cylinder flow structure.

1 aBanaeizadeh, A.1 aSchock, Harold1 aJaberi, F.A. uhttps://icer.msu.edu/research/publications/les-fmdf-spray-combustion-internal-combustion-engines00471nas a2200121 4500008004100000245006500041210006500106260002000171100001600191700002000207700001700227856010500244 2008 eng d00aLarge Eddy Simulation of High Speed Turbulent Reacting Flows0 aLarge Eddy Simulation of High Speed Turbulent Reacting Flows aHawaiic12/20081 aZhaorui, Li1 aBanaeizadeh, A.1 aJaberi, F.A. uhttps://icer.msu.edu/research/publications/large-eddy-simulation-high-speed-turbulent-reacting-flows01959nas a2200157 4500008004100000020002200041245006000063210006000123260003800183520141500221100002001636700001601656700001701672700001501689856009701704 2008 eng d a978-0-7918-4327-700aLarge Eddy Simulations of Turbulent Flows in IC Engines0 aLarge Eddy Simulations of Turbulent Flows in IC Engines aBrooklyn, New YorkbASMEc08/20083 aA new computational methodology is developed and tested for large eddy simulation (LES) of turbulent flows in internal combustion (IC) engines. In this methodology, the filtered compressible Navier-Stokes equations in curvilinear coordinate systems are solved via a generalized, high-order, multi-block, compact differencing scheme and various subgrid-scale (SGS) stress closures. Both reacting and nonreacting flows with and without spray are considered. The LES models have been applied to a piston-cylinder assembly with a stationary open valve and harmonically moving flat piston. The flow in a direct-injection spark-ignition (DISI) engine is also considered. It is observed that during the intake stroke of the engine operation, large-scale unsteady turbulent flow motions are developed behind the intake valves. The physical features of these turbulent motions and the ability of LES to capture them are studied and tested by simulating the flow in a simple configuration involving a stationary valve. The flow statistics predicted by LES are shown to compare well with the available experimental data. The DISI configuration includes all the complexities involved in a realistic single-cylinder IC engine, such as the complex geometry, moving valves, moving piston, spray and combustion. The spray combustion is simulated with the recently developed two-phase filtered mass density (FMDF) model.

1 aBanaeizadeh, A.1 aAfshari, A.1 aJaberi, F.A.1 aSchock, H. uhttps://icer.msu.edu/research/publications/large-eddy-simulations-turbulent-flows-ic-engines00522nas a2200121 4500008004100000050001900041245006500060210006400125260007800189100001700267700001100284856010500295 2008 eng d aAIAA 2008-115400aLarge Eddy Simulations of Two-Phase Turbulent Reacting Flows0 aLarge Eddy Simulations of TwoPhase Turbulent Reacting Flows aReno, NevadabAMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICSc01/20081 aJaberi, F.A.1 aLi, Z. uhttps://icer.msu.edu/research/publications/large-eddy-simulations-two-phase-turbulent-reacting-flows01219nas a2200169 4500008004100000245007600041210006900117260001100186300001200197490000700209520061500216653003100831653004000862100001600902700001700918856011400935 2008 eng d00aLarge-Eddy Simulation of a Dispersed Particle-Laden Turbulent Round Jet0 aLargeEddy Simulation of a Dispersed ParticleLaden Turbulent Roun c2/2008 a683-6950 v513 aThe numerical results obtained by large-eddy simulation (LES) of a particle-laden axisymmetric turbulent jet are compared with the available experimental data. The results indicate that with a new stochastic subgrid-scale (SGS) closure, the effects of the particles on the carrier gas and those of the carrier gas on the particles are correctly captured by the LES. Additional numerical experiments are conducted and used to investigate the effects of particle size, mass-loading ratio, and other flow/particle parameters on the statistics of both the carrier gas phase and the particle dispersed phase.

10aParticle-laden jet; dilute10atwo-phase flows; turbulent jet; LES1 aAlmeida, T.1 aJaberi, F.A. uhttps://icer.msu.edu/research/publications/large-eddy-simulation-dispersed-particle-laden-turbulent-round-jet02380nas a2200169 4500008004100000245007800041210006900119260001200188300001400200490000700214520170600221653001501927653012301942100001602065700001702081856011202098 2008 eng d00aLarge-Eddy Simulation of Turbulent Flow in an Axisymmetric Dump Combustor0 aLargeEddy Simulation of Turbulent Flow in an Axisymmetric Dump C c07/2008 a1576-15920 v463 aA hybrid Eulerian–Lagrangian, mathematical/computational methodology is developed and evaluated for large- eddy simulations of turbulent combustion in complex geometries. The formulation for turbulence is based on the standard subgrid-scale stress models. The formulation for subgrid-scale combustion is based on the filtered mass density function and its equivalent stochastic Lagrangian equations. An algorithm based on high-order compact differencing on generalized multiblock grids is developed for numerical solution of the coupled Eulerian–Lagrangian equations. The results obtained by large-eddy simulations/filtered mass density function show the computational method to be more efficient than existing methods for similar hybrid systems. The consistency, convergence, and accuracy of the filtered mass density function and its Lagrangian–Monte Carlo solver is established for both reacting and nonreacting flows in a dump combustor. The results show that the finite difference and the Monte Carlo numerical methods employed are both accurate and consistent. The results for a reacting premixed dump combustor also agree well with available experimental data. Additionally, the results obtained for other nonreacting turbulent flows are found to be in good agreement with the experimental and high-order numerical data. Filtered mass density function simulations are performed to examine the effects of boundary conditions, subgrid-scale models, as well as physical and geometrical parameters on dump-combustor flows. The results generated for combustors with and without an inlet nozzle are found to be similar as long as appropriate boundary conditions are employed.

10acombustion10aGas turbine; modeling; combustion chamber; Monte Carlo method; Lagragian Method; turbulent flow; large eddy simulation1 aAfshari, A.1 aJaberi, F.A. uhttps://icer.msu.edu/research/publications/large-eddy-simulation-turbulent-flow-axisymmetric-dump-combustor01318nas a2200133 4500008004100000245006100041210006000102260003200162520086300194100001601057700001701073700001901090856007501109 2007 eng d00aLES/FMDF of Turbulent Combustion in Complex Flow Systems0 aLESFMDF of Turbulent Combustion in Complex Flow Systems aReno, NevadabAIAAc01/20073 aA high-order Lagrangian/Eulerian method based on the the filtered mass density func- tion (FMDF) for subgrid-scale (SGS) combustion closure was developed to perform large eddy simulation (LES) of turbulent reacting flows in complex geometrical configurations in multi-block structured grids. In particular, an efficient algorithm has been developed to search and locate particles in multi-block, hexahedral-structured grid system. Also, the consistency, convergence, and accuracy of the FMDF and the Monte Carlo solution of its equivalent stochastic differential equations were assessed. The consistency between Eulerian and Lagrangian fields were established for a reacting flow in a dump combustor. The results obtained for a reacting flow in an axisymmetric, premixed dump-combustor, were found to compare favorably with measured experimental data.

1 aAfshari, A.1 aJaberi, F.A.1 aShih, T., I-P. uhttps://icer.msu.edu/lesfmdf-turbulent-combustion-complex-flow-systems