Despite its substantial coverage, Nom- Bank does not account for all within- sentence arguments and ignores extra- sentential arguments altogether. These ar- guments, which we call implicit, are im- portant to semantic processing, and their recovery could potentially benefit many NLP applications. We present a study of implicit arguments for a select group of frequent nominal predicates. We show that implicit arguments are pervasive for these predicates, adding 65% to the coverage of NomBank. We demonstrate the feasibil- ity of recovering implicit arguments with a supervised classification model. Our re- sults and analyses provide a baseline for future work on this emerging task.

1 aGerber, Matthew1 aChai, Joyce, Y. uhttps://icer.msu.edu/research/publications/beyond-nombank-study-implicit-argumentation-nominal-predicates00777nas a2200229 4500008004100000245009000041210006900131260000800200300001200208490000800220653002200228653002800250653003000278653002100308100001100329700001900340700002000359700001900379700001100398700001500409856012300424 2008 eng d00aThe Biermann Battery in Cosmological MHD Simulations of Population III Star Formation0 aBiermann Battery in Cosmological MHD Simulations of Population I cdec aL57-L600 v68810acosmology: theory10aGalaxies: High-Redshift10aMagnetohydrodynamics: MHD10astars: formation1 aXu, H.1 aO'Shea, B., W.1 aCollins, D., C.1 aNorman, M., L.1 aLi, H.1 aLi, Shuhua uhttps://icer.msu.edu/research/publications/biermann-battery-cosmological-mhd-simulations-population-iii-star-formation01936nas a2200157 4500008004100000245009100041210006900132260001200201300001200213490000800225520137300233100001101606700001701617700001901634856012501653 2007 eng d00aBreaking Bonds with the Left Eigenstate Completely Renormalized Coupled-Cluster Method0 aBreaking Bonds with the Left Eigenstate Completely Renormalized c11/2007 a6 pages0 v1273 aThe recently developed [ P. Piecuch and M. Wloch, J. Chem. Phys. 123, 224105 (2005) ] size-extensive left eigenstate completely renormalized (CR) coupled-cluster (CC) singles (S), doubles (D), and noniterative triples (T) approach, termed CR-CC(2,3) and abbreviated in this paper as CCL, is compared with the full configuration interaction (FCI) method for all possible types of single bond-breaking reactions between C, H, Si, and Cl (except H2) and the H2SiSiH2 double bond-breaking reaction. The CCL method is in excellent agreement with FCI in the entire region R = 1–3Re for all of the studied single bond-breaking reactions, where R and Re are the bond distance and the equilibrium bond length, respectively. The CCL method recovers the FCI results to within approximately 1 mhartree in the region R = 1–3Re of the H–SiH3, H–Cl, H3Si–SiH3, Cl–CH3, H–CH3, and H3C–SiH3 bonds. The maximum errors are −2.1, 1.6, and 1.6 mhartree in the R = 1–3Re region of the H3C–CH3, Cl–Cl, and H3Si–Cl bonds, respectively, while the discrepancy for the H2SiSiH2 double bond-breaking reaction is 6.6 (8.5) mhartree at R = 2(3)Re. CCL also predicts more accurate relative energies than the conventional CCSD and CCSD(T) approaches, and the predecessor of CR-CC(2,3) termed CR-CCSD(T).

1 aGe, Y.1 aGordon, M.S.1 aPiecuch, Piotr uhttps://icer.msu.edu/research/publications/breaking-bonds-left-eigenstate-completely-renormalized-coupled-cluster-method01532nas a2200145 4500008004100000245015700041210006900198260001200267300001400279490000700293520091200300100003001212700001801242856012601260 2006 eng d00aBalancing an accurate representation of the molecular surface in generalized born formalisms with integrator stability in molecular dynamics simulations0 aBalancing an accurate representation of the molecular surface in c04/2006 a719–7290 v273 aDifferent integrator time steps in {NVT} and {NVE} simulations of protein and nucleic acid systems are tested with the {GBMV} {(Generalized} Born using Molecular Volume) and {GBSW} {(Generalized} Born with simple {SWitching)} methods. The simulation stability and energy conservation is investigated in relation to the agreement with the Poisson theory. It is found that very close agreement between generalized Born methods and the Poisson theory based on the commonly used sharp molecular surface definition results in energy drift and simulation artifacts in molecular dynamics simulation protocols with standard 2-fs time steps. New parameters are proposed for the {GBMV} method, which maintains very good agreement with the Poisson theory while providing energy conservation and stable simulations at time steps of 1 to 1.5 fs. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 719-729, 2006

1 aChocholouscaronová, Jana1 aFeig, Michael uhttps://icer.msu.edu/balancing-accurate-representation-molecular-surface-generalized-born-formalisms-integrator-stability01208nas a2200145 4500008004100000245017600041210006900217260001500286300001400301490000800315520057100323100001900894700002300913856012600936 2005 eng d00aBalancing Dynamic and Non-Dynamic Correlation for Diradical and Aromatic Transition States: A Renormalized Coupled-Cluster Study of the Cope Rearrangement of 1,5-Hexadiene0 aBalancing Dynamic and NonDynamic Correlation for Diradical and A c02/05/2005 a2608-26140 v1273 aSingle-reference coupled-cluster calculations employing the completely renormalized CCSD(T) (CR-CCSD(T)) approach have been used to examine the mechanism of the Cope rearrangement of 1,5-hexadiene. In agreement with multireference perturbation theory, the CR-CCSD(T) method favors the concerted mechanism of the Cope rearrangement involving an aromatic transition state. The CCSD(T) approach, which is often regarded as the “gold standard” of electronic structure theory, seems to fail in this case, favoring pathways through diradical structures.

1 aPiecuch, Piotr1 aMcGuire}, M., J. { uhttps://icer.msu.edu/research/publications/balancing-dynamic-non-dynamic-correlation-diradical-aromatic-transition-states02028nas a2200193 4500008004100000245012400041210006900165260005600234300001000290490000800300520128900308100001901597700001401616700001601630700001701646700002601663700001901689856012601708 2005 eng d00aBridging Quantum Chemistry and Nuclear Structure Theory: Coupled-Cluster Calculations for Closed- and Open-Shell Nuclei0 aBridging Quantum Chemistry and Nuclear Structure Theory CoupledC aMelville, NYbAmerican Institute of Physicsc7/2005 a28-450 v7773 aWe review basic elements of the single-reference coupled-cluster theory and discuss large scale ab initio calculations of ground and excited states of 15O, 16O, and 17O using coupled-cluster methods and algorithms developed in quantum chemistry. By using realistic two-body interactions and the renormalized form of the Hamiltonian obtained with a no-core G-matrix approach, we obtain the converged results for 16O and promising preliminary results for 15O and 17O at the level of two-body interactions. The calculated properties other than energies include matter density, charge radius, and charge form factor. The relatively low costs of coupled-cluster calculations, which are characterized by the low-order polynomial scaling with the system size, enable us to probe large model spaces with up to 7 or 8 major oscillator shells, for which non-truncated shell-model calculations for nuclei with A = 15 17 active particles are presently not possible. We argue that the use of coupled-cluster methods and computer algorithms developed by quantum chemists to calculate properties of nuclei is an important step toward the development of accurate and affordable many-body theories that cross the boundaries of various physical sciences. ©2005 American Institute of Physics

1 aPiecuch, Piotr1 aWloch, M.1 aGour, J., R1 aDean, D., J.1 aHjorth-Jensen}, M., {1 aPapenbrock, T. uhttps://icer.msu.edu/bridging-quantum-chemistry-and-nuclear-structure-theory-coupled-cluster-calculations-closed-and-open