We derive coupled-cluster equations for three-body Hamiltonians. The equations for the one- and two-body cluster amplitudes are presented in a factorized form that leads to an efficient numerical implementation. We employ low-momentum two- and three-nucleon interactions and calculate the binding energy of 4He. The results show that the main contribution of the three-nucleon interaction stems from its density-dependent zero-, one-, and two-body terms that result from the normal ordering of the Hamiltonian in coupled-cluster theory. The residual three-body terms that remain after normal ordering can be neglected.

1 aHagen, G.1 aPapenbrock, T.1 aDean, D., J.1 aSchwenk, A.1 aNHogga, A.1 aWloch, M.1 aPiecuch, Piotr uhttps://icer.msu.edu/coupled-cluster-theory-three-body-hamiltonians00864nas a2200193 4500008004100000245003800041210003800079300001400117490000700131520031100138653006000449100001900509700001700528700001600545700001400561700002600575700001400601856005500615 2006 eng d00aCoupled Cluster Theory for Nuclei0 aCoupled Cluster Theory for Nuclei a5338-53450 v203 aThis presentation focuses on some of the recent developments in low-energy nuclear structure theory, with emphasis on applications of coupled-cluster theory. We report on results for ground and excited states in 4He and 16O, and about extensions of coupled-cluster theory to treat three-body forces.

10aNuclear structure; light nuclei; coupled-cluster theory1 aPapenbrock, T.1 aDean, D., J.1 aGour, J., R1 aHagen, G.1 aHjorth-Jensen}, M., {1 aWloch, M. uhttps://icer.msu.edu/coupled-cluster-theory-nuclei01746nas a2200217 4500008004100000245008700041210006900128260001200197300001200209490000800221520103700229100001901266700001701285700001601302700001401318700002601332700001701358700001901375700001401394856012001408 2005 eng d00aNuclear Structure Calculations with Coupled-Cluster Methods from Quantum Chemistry0 aNuclear Structure Calculations with CoupledCluster Methods from c04/2005 a299-3080 v7523 aWe present several coupled-cluster calculations of ground and excited states of 4He and 16O employing methods from quantum chemistry. A comparison of coupled cluster results with the results of exact diagonalization of the hamiltonian in the same model space and other truncated shell-model calculations shows that the quantum chemistry inspired coupled cluster approximations provide an excellent description of ground and excited states of nuclei, with much less computational effort than traditional large-scale shell-model approaches. Unless truncations are made, for nuclei like 16O, full-fledged shell-model calculations with four or more major shells are not possible. However, these and even larger systems can be studied with the coupled cluster methods due to the polynomial rather than factorial scaling inherent in standard shell-model studies. This makes the coupled cluster approaches, developed in quantum chemistry, viable methods for describing weakly bound systems of interest for future nuclear facilities.

1 aPiecuch, Piotr1 aDean, D., J.1 aGour, J., R1 aHagen, G.1 aHjorth-Jensen}, M., {1 aKowalski, K.1 aPapenbrock, T.1 aWloch, M. uhttps://icer.msu.edu/research/publications/nuclear-structure-calculations-coupled-cluster-methods-quantum-chemistry