Evolution and stability of altruist strategies in microbial games

TitleEvolution and stability of altruist strategies in microbial games
Publication TypeJournal Article
Year of Publication2012
AuthorsAdami, C, Schossau, J, Hintze, A
JournalPhysical Review E

When microbes compete for limited resources, they often engage in chemical warfare using bacterial toxins. This competition can be understood in terms of evolutionary game theory ({EGT).} We study the predictions of {EGT} for the bacterial “suicide bomber” game in terms of the phase portraits of population dynamics, for parameter combinations that cover all interesting games for two-players, and seven of the 38 possible phase portraits of the three-player game. We compare these predictions to simulations of these competitions in finite well-mixed populations, but also allowing for probabilistic rather than pure strategies, as well as Darwinian adaptation over tens of thousands of generations. We find that Darwinian evolution of probabilistic strategies stabilizes games of the rock-paper-scissors type that emerge for parameters describing realistic bacterial populations, and point to ways in which the population fixed point can be selected by changing those parameters.